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ABSTRACT: Doping metals and constructing heterostructures are pivotal

strategies to enhance the electrocatalytic activity of metal—organic frameworks

(MOFs). Nevertheless, effectively designing MOF-based catalysts that D)
incorporate both doping and multiphase interfaces poses a significant challenge.
In this study, a one-step Co-doped and Co;0,-modified Ni-MOF catalyst
(named Ni NDC-Co/CP) with a thickness of approximately 5.0 nm was
synthesized by a solvothermal-assisted etching growth strategy. Studies indicate
that the formation of the Co—O—Ni—0O-Co bond in Ni NDC-Co/CP was
found to facilitate charge density redistribution more effectively than the Co—
O—Ni bimetallic synergistic effect in NiCo NDC/CP. The designating Ni
NDC-Co/CP achieved superior oxygen evolution reaction (OER) activity (245
mV @ 10 mA cm™2) and robust long stability (100 h @ 100 mA cm™2) in 1.0
M KOH. Furthermore, the Ni NDC-Co/CP™)|IPt/C/CP) displays pregnant
overall water splitting performance, achieving a current density of 10 mA cm™
at an ultralow voltage of 1.52 V, which is significantly lower than that of commercial electrolyzer using Pt/C and IrO, electrode
materials. In situ Raman spectroscopy elucidated the transformation of Ni NDC-Co to Ni(Co)OOH under an electric field. This
study introduces a novel approach for the rational design of MOF-based OER electrocatalysts.

Bl INTRODUCTION

Green hydrogen, considered the most promising future energy,
is currently produced mainly by electrolyzing water.

enhance the electrocatalytic activity of MOFs through methods
such as element doping, defects construction, and morphology
engineering.lsf17 Notably, doping with foreign elements
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However, the efficiency of electrocatalytic water splitting
faces challenges due to the anodic oxygen evolution reaction
(OER), involving a complex four-electron transfer process with
sluggish reaction kinetics.”* Typically, noble metal catalysts
like Ru/Ir are widely employed for OER, but their high cost
and scarcity hinder widespread application.”® Therefore, the
pursuit of alternative electrocatalysts with comparable OER
activities yet lower cost and higher abundance has become a
compelling research focus. Over recent decades, transition-
metal materials have emerged as promising candidates due to
their flexible oxidation states, variable d-orbital electronic
structures, cost-effectiveness, and diversity. This has led to the
development of numerous transition-metal-based electro-
catalysts, including transition-metal oxides, phosphides,
sulfides, and others.” ™

Among the above-mentioned electrocatalysts, metal—organ-
ic frameworks (MOFs), recognized as typical porous
coordination polymers, have garnered considerable attention

stands out as an effective approach, capitalizing on electronic
interactions and cooperative effects between metal centers.'®"”
For instance, Zhao et al. demonstrated the high OER
performance (250 mV@10 mA cm™2) of a NiCo MOF,
attributing it to the electronic interaction between Ni and Co,
which optimized their OER performance.”” Moreover, the
combination of MOFs with other active metals or metal oxides
has proven to exhibit superior electrocatalytic activity
compared to individual components.”’~>’ Zheng et al.
synthesized a Co;0,@Co MOF, showcasing a synergistic
effect that enhanced OER ability (277 mV@10 mA cm~2).**
Importantly, while doping with other metals modulates the
electronic structure of the initial MOF, hybridization with
metallic materials creates interfaces to optimize electron
transfer.”>™>" As of now, formulating a viable strategy to

due to their distinctive coordination environment, expansive Recf’ived: February 19, 2024 Inor.ganllc(hemlxhy
surface area, and tunability.lo’ll However, pristine MOFs Revised:  March 20, 2024 Yk
encounter challenges such as poor electrical conductivity and Accepted:  March 20, 2024 ?%’%;

restricted active metal centers, limiting their application as
efficient OER electrocatalysts."”™'* To address these limi-
tations, researchers have undertaken extensive efforts to
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combine doping and compositing for maximal MOF
modification remains a significant challenge.

Motivated by these considerations, Co;0,-modified and Co-
doping Ni MOF (Ni NDC-Co/CP) was prepared through a
solvothermal-assisted etching growth strategy. In comparison
to NiCo NDC/CP, Ni NDC-Co/CP demonstrates superior
OER activity of 245 and 308 mV at 10 and 100 mA cm™?
respectively, while maintaining stability for 100 h at 100 mA
cm™2 When Ni NDC-Co/CPMIIPt/C/CP) cells were
assembled, low voltages of 1.52 and 1.63 V were attained at
10 and 100 mA cm™?, respectively, with stability sustained for
over 70 h at 100 mA cm™2 Comprehensive characterizations
confirmed that the outstanding electrocatalytic performance of
Ni NDC-Co/CP originates from the Co—O-Ni—O-Co
bond, resulting from the cooperative effects of Co doping
and Co;0, modification. In situ Raman results further
corroborate the transformation of Ni NDC-Co into Ni(Co)-
OOH as the real active component in the electrochemical
reaction.

B RESULTS AND DISCUSSION

The preparation process of Ni NDC-Co/CP is shown in
Figure 1. Initially, the pristine 2D Ni NDC with a MOq

QN> @co» #fcoo,
+rr HNDC
o
© 120°C,9h

+ .'.““t;_
Ni NDC/CP Ni NDC-Co/CP

Figure 1. Schematic illustration of the synthesis of Ni NDC-Co/CP.

coordination environment was synthesized using a straightfor-
ward one-step solvothermal strategy, employing NiCl,-6H,0
and H,NDC as the metal source and organic ligand,
respectively. In the subsequent ion etching growth process,
Co®* was effectively introduced into the second building units
of Ni NDC, facilitated by the presence of the same six Co/Ni
coordination centers.”**” Concurrently, a portion of the Co**
ions underwent oxidation, forming Co;0,, which intricately
decorated the surface of Ni NDC nanosheets, leading to the
self-regulated formation of the Ni NDC-Co/CP heterostruc-
ture.

X-ray diffraction (XRD) was employed to scrutinize the
crystal structures of the catalysts. In Figure 2a, all samples
displayed the characteristic peaks at 26.6 and 54.8°, assignable
to the background CP (PDF# 26—1077).”° Notably, Ni NDC/
CP, NiCo NDC/CP, and Ni NDC-Co/CP displayed two
similar peaks at 7.5 and 14.8°, aligning well with the (001) and
(002) facets of the Ni MOF simulation, affirming the
successful construction of NDC-based MOF composites.””"
Intriguingly, the XRD pattern of the Ni NDC-Co/CP catalyst
did not reveal any Co;0, diffraction peaks, in contrast to clear
peaks observed in samples collected at the bottom of the
solvent thermal reactor (Figure S1), indicatinzg the low-loading
Co;0, modification in the target catalyst.’>*’ Raman spec-
troscopy was performed to further explore the characteristic
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peaks of Ni NDC/CP, NiCo NDC/CP, and Ni NDC-Co/CP
(Figure 2b). Obviously, the peaks in the range of 1300 to 1800
cm™" correspond to the characteristics of H,NDC organic
ligands, and the peak at 668 cm™ is attributed to the
characteristic peak of M—O bonds, once again Verifyin% the
sufficient coordination of metal ions and organic ligands.”*™°
Compared to Ni NDC/CP and NiCo NDC/CP, Ni NDC-Co/
CP exhibited new peaks at around 470, 680, and 1180 cm™},
indicating the presence of Co;0, species.’”

The morphology and structure of the samples were
characterized by scanning electron microscopy (SEM).
Remarkably, Ni NDC/CP presents cross-linked nanosheets
with smooth surfaces (Figure 2c). For NiCo NDC/CP, the
nanosheets were slightly overlapped and thicker than those of
Ni NDC (Figure S2). In the case of Ni NDC-Co/CP, the
apparent surface roughness of the nanosheets can be explained
by the decoration of Co;0,, which validates the previously
explained ion etching growth mechanism (Figure 2d). Atomic
force microscopy (AFM) test results show that Ni NDC-Co
retained its ultrathin properties with a thickness of about 5.0
nm (Figure 2e). Transmission electron microscopy (TEM)
images in Figure 2f also validated the nanosheet structure, with
clear lattice fringes and plane spacing of 0.24 and 0.58 nm
observed in the high-resolution TEM (HR-TEM) image,
attributed to the (311) and (002) planes of Co;0, and Ni
NDC, respectively (Figure 2g). Additionally, the selective area
electron diffraction (SAED) pattern in Figure 2h revealed
diffraction rings corresponding to the (311) plane of Co;0,
and the (002) plane of Ni NDC, consistent with the lattice
fringes in Figure 2g. The corresponding EDX spectra
showcased a homogeneous distribution of O, Ni, and Co,
while ICP-MS further clarified the elemental content of Ni
(8.87 wt %) and Co (6.18 wt %) (Figure 2i, Table S1).

The elemental valences of Ni NDC/CP, NiCo NDC/CP,
and Ni NDC-Co/CP were scrutinized using X-ray photo-
electron spectroscopy (XPS). Specifically, the C 1s binding
energy in the original data was standardized to 284.8 eV, and
subsequently, the high-resolution Ni 2p and Fe 2p XPS spectra
were analyzed by using peak splitting rules. The XPS survey
spectra of various catalysts exhibit the presence of O, Ni, and
Co elements concurrently (see Figure S4), consistent with the
findings of EDS mapping. In the Ni 2p spectra (Figure 3a), the
peak at 858.25 eV corresponds to the typical Ni** species,
while the peak at 856 eV belongs to the Ni** state.”*™*’ For Co
2p spectra (Figure 3b), the peaks of Co®* can be observed with
the binding energy of 781.3 (Co®" 2p;),), and the peaks at
780.1 €V can be ascribed to the Co®" 2p;,,."""** The relative
ratio of Ni**/Ni** is higher in Ni NDC-Co/CP compared to
NiCo NDC/CP, suggesting a greater proportion of high-
valence Ni** in Ni NDC-Co/CP. This phenomenon is
advantageous for the OER process.””"* Additionally, the
binding energy of Ni?* in Ni NDC-Co/CP and NiCo NDC/
CP is more positively shifted than in Ni NDC/CP, implying a
localized alteration in the electronic environment of Ni**.*®
Considering the dual effect of Co doping and Co;0,
modification in Ni NDC-Co/CP and the XPS results, a Co—
O—Ni—0O—-Co bond is proposed based on the crystal field
theory to describe the electron-transfer mechanism present in
Ni NDC-Co/CP (Figure 3c). In Ni NDC/CP, the z-symmetry
d-orbitals (f,) of the Ni** are fully occupied, resulting in the
e —e” repulsion as the main interplay of the bridging O*~ and
Ni?*.** The symmetrically filled electronic degenerate orbitals
(¢, and t,,) of Ni** prevent Jahn—Teller (JT) distortion,
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Figure 2. (a) XRD patterns of Ni NDC/CP, simulated Ni NDC, NiCo NDC/CP, and Ni NDC-Co/CP. (b) Raman patterns of Ni NDC/CP,
NiCo NDC/CP, and Ni NDC-Co/CP. (c) SEM image of the Ni NDC/CP. (d) SEM image, (¢) AFM image, (f) TEM image, (g) HR-TEM image,

(h) SAED image, and (i) EDS mapping of Ni NDC-Co/CP.
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Figure 3. (a) High-resolution Ni 2p XPS spectra of Ni NDC/CP,
NiCo NDC/CP, and Ni NDC-Co/CP; (b) Fe 2p XPS spectra of
NiCo NDC/CP and Ni NDC-Co/CP; and (c) schematics of the
electronic interplay among Ni NDC-Co/CP.

requiring a high input energy for the OER to proceed.47 In
contrast, the electronic valence configuration of Co** is 3d’
with the high-spin state, leading to unpaired electrons in the 7-
symmetric (f,,) d-orbitals that interact with the bridging O~
through n-donation.* Through dual modification of Ni** from
two Co?" molecules at both sides via Co—O—Ni—O—Co,
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stronger electron transfer occurs, transforming Ni** (tzgéegz) to
Ni** (t,,%,"). Notably, Ni** exhibits JT distortion due to the
asymmetric filling of electronic degenerate orbitals, favoring
the OER.* Overall, Co, as an electron acceptor, extracts
electrons from the Ni site through the Co—O—-Ni—O-Co
electronic coupling effect, converting Ni** to Ni*', resulting in
JT distortion, shortening of Ni—O bonds, and improved OER
activity.s'o'51

The OER activity of the variously prepared catalysts was
assessed by a three-electrode measurement system in 1.0 M
KOH, and all linear sweep voltammetry (LSV) curves were
calibrated with 95% iR compensation. Given that the CoCl;-
6H,0 content significantly influences catalytic performance, Ni
NDC-Co/CP obtained by adding different mmol of CoCl;-
6H,0 was initially evaluated for the OER activity. The results
indicated that the optimal amount of CoCl;:6H,O was 1.5
mmol (Figure S3). In Figure 4a, Ni NDC-Co/CP exhibits an
overpotential of 245/308 mV at a current density of 10/100
mA cm™? surpassing those of other samples. Overpotentials at
current densities of 10, 50, and 100 mA cm™* were used as
comparative variables, with the relative results presented in
Figure 4b. The kinetics of the OER process were further
evaluated by Tafel slopes.”> Notably, the Tafel slope of Ni
NDC-Co/CP (49.1 mV dec™") is significantly lower than that
of Ni NDC/CP (105.5 mV dec™), NiCo NDC/CP (53.2 mV
dec™'), and RuO,/CP (186.3 mV dec™'), indicating faster
OER dynamics for Ni NDC-Co/CP (Figure 4d). Importantly,
Ni NDC-Co/CP competes favorably with recently reported
OER catalysts (Figure 4c, Table S2). The electrochemical
active surface area (ECSA) value is a crucial factor reflecting
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Figure 4. (a) Linear sweep voltammetry (LSV) curves of Ni NDC-Co/CP, NiCo NDC/CP, Ni NDC/CP, and RuO,/CP in the OER. (b)
Overpotentials for different samples at 10, 50, and 100 mA cm™2 (c) Comparison of the overpotential at 10 mA cm™ and Tafel slope with
previously reported catalysts. (d) Corresponding Tafel slope. (e) Cy values, (f) Nyquist diagrams, and (g) TOF values of Ni NDC-Co/CP, NiCo
NDC/CP, and Ni NDC/CP. (h) Chronopotentiometry curve of Ni NDC-Co/CP at 100 mA cm 2.

the OER performance, where a larger ECSA implies more
available active sites during the OER process. ECSA was
identified by measuring the Cy value in the CV curve of the
nonfaradaic potential region with different scan rates (Figure
S4). In Figure 4e, Ni NDC-Co/CP exhibits a larger Cy (5.8
mF ¢cm™) compared to Ni NDC/CP (0.58 mF cm™) and
NiCo NDC/CP (5.3 mF cm™?), suggesting that Co doping
and Co;0, modification improved the intrinsic activity of Ni
NDC. To further mitigate the influence of ECSA on the OER
performance, ECSA-normalized LSV curves were conducted
and depicted in Figure S7. The results indicated that Ni NDC-
Co/CP exhibited the most favorable intrinsic OER perform-
ance among the samples. Ionic resistance and transport
resistance are critical factors influencing the electrocatalytic
activity of OER. Therefore, the charge-transfer kinetics of the
catalyst were further evaluated by measuring electrochemical
impedance spectroscopy (EIS). The Nyquist plot of the
electrode and the associated equivalent circuit model are
shown in Figure 4f. Here, R, represents the solution resistance
of the electrolyte, R, denotes the charge-transfer resistance,
and the constant-phase element (CPE) is related to the
intrinsic activity and geometry of the catalyst.”” In comparison
to Ni NDC/CP (R, = 2.86 Q) and NiCo NDC/CP (R, =
1.98 Q), Ni NDC-Co/CP demonstrates a lower charge-
transfer resistance (R, = 1.74 Q), indicating the fastest charge-
transfer kinetics. Additionally, turnover frequency (TOF),
reflecting the number of O, molecules delivered per second
per active site, is considered one of the most meaningful
parameters for judging the intrinsic activity of catalysts.”* The
calculated TOF for the prepared catalysts follows the order: Ni
NDC-Co/CP > NiCo NDC/CP > Ni NDC/CP (Figure 4g).
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Based on these results, the enhanced OER performance
exhibited by Ni NDC-Co/CP can be attributed to two key
factors. First, Co doping contributes to the improved catalytic
performance.> Second, the presence of Co;0, modification on
the Ni NDC surface facilitates the creation of more accessible
active sites, thereby accelerating electron-transfer kinetics and
enhancing its intrinsic activity. Long-term stability is also an
essential criterion for evaluating catalysts. As shown in Figure
4h, Ni NDC-Co/CP exhibits remarkable stability, maintaining
a voltage retention rate of over 98% in a current density over
100 h at 100 mA cm 2, thus confirming its exceptional stability.

Leveraging the exceptional OER performance of Ni NDC-
Co/CP, a water-splitting device was prepared to evaluate its
electrocatalytic performance, utilized by Ni NDC-Co/CP as
the anode and Pt/C/CP as the cathode (Figure Sa). At high
current densities, the polarization curves exhibit slight
instability, primarily due to the rapid formation of hydrogen
bubbles at the electrode surface. As depicted in Figure Sb, the
Ni NDC-Co/CP™IIPt/C/CP) configuration exhibits a cell
voltage of 1.52 and 1.63 V at 10 and 100 mA cm?
respectively, slightly lower than that of commercial RuO,/
CPWIIPt/C/CP™) and other previously published catalysts
(Figure Sc, Table S3). Furthermore, the chronopotentiometry
curve of Ni NDC-Co/CP™IIPt/C/CP(™) at 100 mA cm 2 was
maintained for more than 70 h without significant recession
(Figure 5d), attesting to its high durability for overall water
splitting. Notably, during the stability test, O, and H, bubbles
were observed on the anode and cathode surfaces, respectively,
further confirming the successful electrochemical water
splitting (inset in Figure Sd).

https://doi.org/10.1021/acs.inorgchem.4c00712
Inorg. Chem. 2024, 63, 7045—7052


https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.4c00712/suppl_file/ic4c00712_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.4c00712/suppl_file/ic4c00712_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.4c00712/suppl_file/ic4c00712_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.4c00712/suppl_file/ic4c00712_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c00712?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c00712?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c00712?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c00712?fig=fig4&ref=pdf
pubs.acs.org/IC?ref=pdf
https://doi.org/10.1021/acs.inorgchem.4c00712?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Inorganic Chemistry

pubs.acs.org/IC

a -

—— Ni NDC-Co/CP®)||PCICP")
RuO,/CP™||PYCICPL),

- L -
&
) -
g 300
| | o s
<€ 200 -
E
: —-100 - - - — - = = — — e, AN AR
;!NCICP Ni NDC/Co/CP [ e = = = = === =
T T T T T
10 12 14 16 18 20 22
Voltage (V)
C20 d 20
10 mA cm 2 Ty
I [
15 o o % na
s g o 2 2 g gt e
@ E Z > o< Q| 2z T ——
2 1.0 o =S % T o : > UP
(8] w =
3 29058 9835 58, o A
> 05 “‘?6325%0‘:’“
’ zZ gauw Qa3 S| 100 mA cm
@ = 0 0 0 0 % Y| o c
LZO00O0okon o
0.0 14 ——— T
0 10 20 30 40 50 60 70
Catalysts Time (h)

Figure 5. (a) Schematic diagram of the overall water splitting
electrolyzer, (b) comparison of the polarization curves of Ni NDC-
Co/CPYIIPt/C/CP) and the RuO,/CPMIIPt/C/CP™) at high
currents in 1.0 M KOH, (c) comparing cell voltages with the recently
reported electrolyzers at 10 mA cm™ in 1.0 M KOH, and (d) long-
term stability test of Ni NDC-Co/CP™|IPt/C/CP™) at 100 mA cm ™2
in 1.0 M KOH.

Examining the microstructure and surface species evolution
after the OER reaction is crucial for elucidating the catalytic
mechanism. The XRD pattern indicates the disappearance of
characteristic MOF peaks (Figure 6a), while newly emerged
peaks can be attributed to NiOOH (PDF# 06—0075) and
CoOOH (PDF# 07-0169).”® Following the stability test, the
catalyst retained its nanosheet morphology, as evidenced by
the corresponding HR-TEM images revealing distinct lattice

stripes with spacings of 0.21 and 0.43 nm, consistent with the
crystal planes of NiOOH (105) and CoOOH (003),
respectively (Figures 6b,c and S8). EDX mapping demon-
strates a uniform distribution of O, Ni, and Co elements after
the OER stability testing (Figure S9).

Post OER stabilization, the surface XPS of the Ni NDC-Co/
CP catalyst reveals a change in the area ratio of Ni**/Ni** in
the Ni 2p spectrum from 0.29 to 0.35, indicating the
generation of more Ni’* species (Figure 6d). Similarly, for
the Co 2p spectra, the area ratio of Co%/Co*" increases to
0.99, illustrating the formation of Co oxide/hydroxides during
the OER process (Figure 6e).>>%” Prior studies suggest that the
high-valence Ni/Co not only promotes the occurrence of
active phases in metal oxyhydroxides but also optimizes the
electronic structure of the oxyhydroxides, accelerating OER
kinetics.”®"’

In situ Raman was employed to verify the transformation
mechanism of Ni NDC-Co/CP during the OER process in the
potential range from 1.1 to 1.6 V with an interval of 0.1 V
(Figure 6f). In the potential range 1.1—1.3 V (vs. RHE, 1.0 M
KOH), the peak at around 680 cm™ corresponds to Co;0,,
while the other peaks at around 494 and 520 cm™' represent
Ni(OH),.°> When the potential increased from 1.4 to 1.6 V,
the characteristic peaks of Ni(OH), and Co;0, gradually
disappeared, and two distinct signal peaks were detected at
around 474 and 549 cm™’, corresponding to the Ni/Co—O
bond in Ni(Co)OOH, respectively.’”** It is noteworthy that
the peak at 1200 to 1800 cm™' can be attributed to the
H,NDC organic ligand. The gradual decomposition of
H,NDC can be observed from 1.1 to 1.6 V, further confirming
the transformation of the Ni NDC-Co/CP surface into
Ni(Co)OOH during the OER process, consistent with the
XRD results.
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Figure 6. (a) XRD image, (b) TEM image, (c) HR-TEM image, (d) XPS of Ni 2p, and (e) XPS of Co 2p of Ni NDC-Co/CP after the OER
stability test. (f) Electrochemical in situ Raman spectra of Ni NDC-Co/CP in the potential range of 1.1-1.6 V (vs RHE). (g) OER mechanistic

illustration of Ni NDC-Co/CP.
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The proposed catalytic mechanism is explained as follows
(Figure 6g): Initially, OH™ is absorbed at the Ni/Co sites to
form the Ni/Co—OH group (Step I). This is followed by the
first deprotonation of the Ni/Co—OH group to form the Ni/
Co—O group (Step II). As the reaction proceeds, the Ni/Co—
O group combines with OH™ to form the superoxide species
Ni/Co-OOH (Step III). Finally, the Ni/Co-OOH reacts with
the OH™ and underwent deprotonation to produce O, and
H,0 (Step IV).%*

Based on the above results, the excellent OER performance
of Ni NDC-Co/CP can be attributed to several factors: (1)
The presence of rough nanosheets facilitated by Co;0,, which
are modified to enhance the contact area with the electrolyte,
thereby expediting electron transfer under an electric field.**
(2) The introduction of Co®* leads to the generation of Co—
O—Ni—O—Co units in Ni NDC-Co, optimizing the d-orbitals
of Ni** and promoting the formation of Ni**, thereby reducing
the reaction energy barrier in the OER process.“’(’5 (3) In situ
growth avoids the use of binders and preserves the catalytic
capacity of the catalyst as much as possible.”®

B CONCLUSIONS

In summary, we have prepared Ni NDC-Co/CP by using a
solvothermal-assisted etching growth strategy. The unique
nanosheet morphology, Co ion doping and Co;0, modifica-
tion on the surface of Ni NDC nanosheets identified as key
contributors to its exceptional OER performance. As a result,
the Ni NDC-Co/CP exhibits a low overpotential of 245 and
308 mV at 10 and 100 mA cm ™, respectively, a Tafel slope of
49.1 mV dec™' and a long-term stability for 100 h at 100 mA
cm 2 Ina water-splitting device, Ni NDC-Co/CP as the anode
and Pt/C/CP as the cathode yielded cell voltages of 1.52 and
1.63 V at 10 and 100 mA cm™?, respectively. Microstructural
analyses confirmed the transformation of Ni NDC-Co/CP into
Ni(Co)OOH during the OER process. Ni NDC-Co/CP
emerges as a promising candidate for efficient electrochemical
water splitting and provides an innovative approach to the
design of high-performance MOF-based electrocatalysts.
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