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Electron-transfer enhancement of urchin-like
CoP–Ce2(CO3)2O/NF as an ultra-stable
bifunctional catalyst for efficient overall water
splitting†

Lixia Wang,a Meilin Huang,a Mingcheng Gao,a Tayirjan Taylor Isimjan *b and
Xiulin Yang *a

Effective control of strong electron interaction at heterogeneous interfaces is crucial for the creation of

highly efficient and stable bifunctional catalysts for water splitting. In this work, we synthesized an

urchin-like CoP–Ce2(CO3)2O catalyst on nickel foam (CoP–Ce2(CO3)2O/NF) via a facile hydrothermal

and gas-phase phosphating process, which enhances active site exposure and improves catalytic reac-

tion kinetics. Spectroscopy analysis reveals that the enhanced performance is due to the charge transfer

between CoP and Ce2(CO3)2O and the unique urchin-like structure of the hybrid catalyst. The CoP–

Ce2(CO3)2O/NF catalyst showed excellent hydrogen/oxygen evolution reaction (HER/OER) performance

(Z10 = 85.2 and 205.5 mV) and robust long-term stability in 1.0 M KOH. Additionally, the CoP–

Ce2(CO3)2O/NF(+)||CoP–Ce2(CO3)2O/NF(�) electrolyzer required only a low cell voltage of 1.82 V to pro-

duce 100 mA cm�2 for overall water splitting, outperforming most previous catalysts. This work presents

a strategy for interfacial engineering to improve the activity of bifunctional heterojunction electrocata-

lysts for overall water splitting.

1. Introduction

The depletion of fossil fuels has created a pressing need for the
development of green and sustainable energy alternatives.1,2

Contemporarily, hydrogen is considered as one of the most
promising renewable and eco-friendly energy sources to replace
fossil fuels, and alkaline water electrolysis is a key process
for large-scale hydrogen production.3,4 Water splitting is an
encouraging energy storage and conversion technology involving
cathodic hydrogen evolution reaction (HER) and anodic oxygen
evolution reaction (OER).5 Nevertheless, commercial catalysts
are typically made with noble metals, which are expensive
and scarce for extensive applications.6,7 Consequently, exploring
more efficient, cost-effective, and abundant non-precious
metal-based catalysts with superior activity and stability is

necessary.8–10 Various transition metal composites have been
found to be promising candidates due to their low cost, abun-
dant earth reserves and high electrocatalytic activity.11,12 In
particular, transition metal phosphides (TMPs) have significantly
progressed in electrocatalysts.13 The negative charge on P in TMPs
restricts electron spread in the metal, leading to ionic and
covalent bond coexistence in M–P, making TMPs more thermally
and chemically stable.14 This also narrows the energy gap between
molecular orbitals, crucial for electrocatalysis.15

The utilization of CoP in catalysis is widespread due to its
abundance, high electrical conductivity, and excellent catalytic
activity and stability.16–18 The moderate contact between phos-
phorus and reaction intermediates creates proton acceptor and
hydride acceptor sites on the CoP surface.19,20 Its combination
of metal and semiconductor chemical bonds further enhances its
intrinsic activity and stability.21,22 However, due to the limited
number of active sites, individual CoP typically displays poor
electrochemical performance.23,24 Researchers have therefore
sought ways to optimize the catalyst morphology, regulate the
active species’ internal electronic structure, and construct hetero-
structures and interfaces to improve charge/electron transfer rates
and increase active sites.25,26 More attractively, due to the redox
interaction between Ce3+ and Ce4+, compounds of Ce usually have
mixed electron/ion transport and improved catalytic properties.27–29

Due to its unique electronic structure, Ce2(CO3)2O can activate
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water molecules in the electrolyte, resulting in excellent stability
and corrosion resistance.30 However, using Ce2(CO3)2O alone may
not be sufficient for high-efficiency water splitting. By combining
Ce2(CO3)2O with other materials, the synergistic effect can greatly
enhance the electrocatalytic activity and improve its efficiency.31

Heterostructure and interfacial engineering of CoP/Ce-based cata-
lysts most probably further boosts catalytic activity by improving
the charge/electron transfer rates and active site numbers.32–36

In this work, inspired by the unique electronic structure of
Ce and the pervasive application of CoP in the field of catalysis,
an urchin-like CoP–Ce2(CO3)2O/NF heterojunction catalyst was
designed and constructed by a hydrothermal and gas-phase
phosphating strategy. The optimized CoP–Ce2(CO3)2O/NF
demonstrated exceptional HER/OER electrocatalytic performance
(Z10 = 85.2/205.5 mV) and remarkable long-term durability in
alkaline conditions, maintaining 400 and 280 h at 10 mA cm�2,
respectively. Meanwhile, the water-splitting electrolyzer device
assembled by CoP–Ce2(CO3)2O/NF requires only 1.82 V to achieve
100 mA cm�2 and displayed excellent stability.

2. Experimental
2.1. Materials

All reagents were analytical grade and used without further
purification. Cobalt(II) chloride (CoCl2�6H2O), cerium nitrate
hexahydrate (Ce(NO3)3�6H2O, 99.95%), and ruthenium trichloride
(RuCl3�xH2O, Ru: 37–40%) were obtained from Shanghai Aladdin
Biochemical Technology Co., Ltd. Urea (CO(NH2)2, Z99.0%),
sodium hypophosphite monohydrate (NaH2PO2�H2O, 99%), abso-
lute ethanol (C2H5OH, Z99.7%), Nafion (5% solution), and
potassium hydroxide (KOH) were acquired from Guangxi Zoey
Biotechnology Co., Ltd. Commercial Pt/C (20 wt% for platinum)
was purchased from Alfa Aesar, and sulphuric acid (H2SO4, 95.0–
98.0%) was provided by Xilong Chemical Co., Ltd. The nickel
foam (NF) used as a substrate was obtained from Suzhou Sinero
Technology Co., Ltd (3 cm � 1.5 cm).

2.2. Synthesis of Co–Ce species on NF

The NF was ultrasonically cleaned with 0.5 M H2SO4, deionized
water and ethanol for 15 min to remove impurities. A solution
of 1.5 mmol (CoCl2�6H2O), 0.5 mmol Ce(NO3)3�6H2O, and
2 mmol urea in 40 mL deionized (DI) water was prepared and
transferred to a 100 mL Teflon-line stainless steel autoclave.
The pretreated NF was then placed in the autoclave, and heated
to 150 1C for 8 h. After cooling to room temperature naturally,
the product was washed with DI water and dried at room tempera-
ture. To study the effect of Co/Ce ratio on the composite material,
five materials were synthesized with a total of 2 mmol Co2+ and
Ce3+ and varying molar ratios of Co/Ce (4/0, 3/1, 2/2, 1/3, and 0/4).

2.3. Synthesis of CoP–Ce2(CO3)2O/NF

Two 1 cm � 1.5 cm pieces of Co–Ce species and 1.0 g of
NaH2PO2�H2O were placed in the middle and upstream of a
quartz tube, respectively. Subsequently, the tube furnace was
heated to 350 1C in a N2 atmosphere for 2 h. The resulting

products were rinsed with DI water and dried at room tem-
perature. CoP–Ce2(CO3)2O/NF refers to samples obtained with a
Co/Ce of 3/1 unless stated otherwise. To make CoP/NF or
Ce2(CO3)2O/NF, the process was the same as CoP–Ce2(CO3)2O/
NF, but without the respective Co or Ce source.

2.4. Preparation of RuO2/NF and Pt/C/NF

The RuO2 powder was made by heating RuCl3 in air at 400 1C.
Afterwards, 2 mg of RuO2 or Pt/C was mixed with 200 mL of
DI water, 200 mL of ethanol and 5 mL of 5% Nafion, creating a
homogeneous ink through ultrasonic dispersion. The ink was
drop-cast on the NF surface (1 cm � 1.5 cm) and dried in air.

3. Results and discussion
3.1. Structural and morphological characterizations

The synthesis of CoP–Ce2(CO3)2O/NF is illustrated in Fig. 1a. A
facile hydrothermal reaction is used to create Co–Ce species/
NF, followed by gas-phase phosphating treatment at 350 1C to
convert it to CoP–Ce2(CO3)2O/NF. The X-ray diffraction (XRD)
patterns provided in Fig. S2 (ESI†) confirm that the strong
peaks of Co-species/NF match the signals of Co(CO3)0.5(OH)�
0.11H2O (JCPDS: 48-0083). The diffraction peaks of CoP/NF
obtained after phosphorylation of Co-species/NF are in accor-
dance with the characteristic signal of CoP (JCPDS: 29-0497) in
Fig. 1b.37 Surprisingly, the diffraction peaks of Ce-species/NF
before and after phosphorylation were consistent, as evidenced
by the standard pattern of Ce2(CO3)2O�H2O (JCPDS: 44-0617),
although there were some differences in the intensity of the
peaks (Fig. 1c). This indicates that selective phosphorylation of
the Co–Ce species has occurred.38 The XRD pattern of the Co–
Ce precursor after phosphatizing shows that the diffraction
peaks are in accordance with the standard patterns of CoP
(JCPDS: 29-0497) and Ce2(CO3)2O�H2O (JCPDS: 44-0617); hence,
the obtained sample is denominated as CoP–Ce2(CO3)2O/NF for
convenience (Fig. 1d).

Scanning electron microscopy (SEM) was used to investigate
morphological evolution in materials with varying Co/Ce ratios.
The precursor form changed from cross-linked nanowires (with
only Co) to nanorods with increasing Ce ratio (Fig. S3, ESI†).
The phosphorylation process did not alter the structure (Fig. S4,
ESI†). The urchin-like CoP–Ce2(CO3)2O/NF is more beneficial in
exposing abundant active sites and improving the electrocata-
lytic activity (Fig. 2a). Meanwhile, the transmission electron
microscopy (TEM) image showed that the CoP–Ce2(CO3)2O/NF
consists of nanowires with smooth surfaces, likely due to the
higher Co content (Fig. 2b). According to Fig. 2c, the high
resolution TEM (HR-TEM) image displayed that the interplanar
spacing of CoP–Ce2(CO3)2O/NF was 0.270 and 0.199 nm, corres-
ponding to the (311) and (112) of Ce2(CO3)2O�H2O and CoP,
respectively. The selective area electron diffraction (SAED)
pattern further confirmed the XRD results, identifying the
diffraction rings as the (301) and (111) planes of CoP, and
(200) planes of Ce2(CO3)2O�H2O (Fig. 2d). The energy dispersive
X-ray spectroscopy (EDS) results confirmed the presence of Co,
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Ce, P and O elements (Fig. 2e) with uniform distribution
throughout the CoP–Ce2(CO3)2O/NF, as shown in the high-
angle annular dark-field scanning TEM (HAADF) image and
elemental mapping (Fig. 2f).

X-ray photoelectron spectroscopy (XPS) was conducted to
analyze the valence state and chemical composition of CoP–
Ce2(CO3)2O/NF. The full survey spectrum showed the presence
of Co, Ce, O and P elements, confirming the TEM results (Fig.
S5a, ESI†). The high-resolution C 1s spectrum demonstrated
four peaks with binding energies of 284.0, 284.8, 286.0, and

288.0 eV, corresponding to CQC, C–C, C–O, and CQO, respec-
tively (Fig. S5b, ESI†).39 As shown in Fig. 3a, the Co 2p3/2

spectrum of the CoP–Ce2(CO3)2O/NF is divided into four peaks
with binding energies of 778.3, 781.3, 783.2 and 785.3 eV,
corresponding to the Co–P, Co(II)–O, Co(III)–O and satellite
peaks, respectively.40 It is worth mentioning that the Co 2p peak
of CoP–Ce2(CO3)2O/NF is shifted negatively by approximately
0.3 eV compared to CoP/NF, indicating that Ce2(CO3)2O acts as
an electron donor. Furthermore, the high-resolution Ce 3d5/2

spectrum (Fig. 3b) shows that the peak of CoP–Ce2(CO3)2O/NF
is convolved into two peaks for Ce4+ (881.8 eV) and Ce3+

(885.6 eV),39,41 which are positively shifted by 0.4 eV compared
to Ce2(CO3)2O/NF, suggesting that Co acts as an electron acceptor.
The high-resolution O 1s region (Fig. 3c) consists of three
components at 530.1, 531.4, and 532.3 eV, attributed to metallic
oxygen (M–O), OH�, and surface adsorbed water (H2Oads),
respectively.42 For the P 2p spectrum, the apparent peak at
133.7 eV reflects the presence of P–O species, arising from super-
ficial oxidation.11 Additionally, the peaks at 128.7 and 130.1 eV are
ascribed to the Co–P bonds of CoP/NF and CoP–Ce2(CO3)2O/NF.37

These results confirm that there is an electron transfer between
CoP/NF and Ce2(CO3)2O/NF, which contributes to the strong
electronic coupling between them, thereby promoting the electro-
catalytic performance.43

3.2. Electrocatalytic performance

To evaluate the electrocatalytic performance of the catalysts,
linear sweep voltammetry (LSV) in 1.0 M KOH was used to
obtain polarization curves. The activity of samples made with
different hydrothermal times (6, 8, and 10 h) was evaluated,
with 8 h showing the best HER and OER activity (Fig. S6 and S7,
ESI†). Furthermore, the activity and stability of the catalyst were
found to be poor when using only Co, Ce, or Co/Ce ratios of 1 : 3

Fig. 2 (a) SEM image with (inset) the high-magnification SEM image, (b)
TEM image, (c) HR-TEM image, (d) SAED image, (e) EDS spectrum profile,
and (f) HAADF-STEM image and corresponding element mappings of
CoP–Ce2(CO3)2O/NF.

Fig. 1 (a) Schematic diagram for the synthesis of CoP–Ce2(CO3)2O/NF. (b) XRD pattern of CoP/NF. (c) XRD patterns of Ce-species/NF, and (d) Ce–Co
species/NF before and after phosphating.
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or 2 : 2, as shown in Fig. S8 and S9 (ESI†). However, the catalysts
with a Co/Ce ratio of 3/1 exhibited the best performance.
Additionally, we conducted stability tests on the as-prepared
electrocatalysts with different Co/Ce ratios by subjecting them
to a constant current of 10 mA cm�2 (Fig. S10, ESI†). The results
suggest that the incorporation of Ce species can enhance the
stability of CoP. Therefore, the Co and Ce content are crucial
factors that affect the electrocatalytic activity and stability of the
catalyst. The HER activities of the samples are illustrated in
Fig. 4a. CoP–Ce2(CO3)2O/NF presents a lower potential of
85.2 mV at 10 mA cm�2, compared to Pt/C/NF, and much lower
than CoP/NF (206.3 mV) and Ce2(CO3)2O/NF (211.8 mV), mak-
ing it superior to most recently reported HER catalysts (Fig. 4b and
Table S2, ESI†). Additionally, compared to CoP/NF (113.4 mV
dec�1) and Ce2(CO3)2O/NF (120.7 mV dec�1), CoP–Ce2(CO3)2O/NF
displayed a lower Tafel slope of 65.2 mV dec�1 (Fig. 4c), indicating
that the Heyrovsky step (H* + H2O + e�- H2 + OH�) was the rate-
limiting step.44 Electrochemical impedance spectroscopy (EIS)
was employed to assess the charge-transfer kinetics. The charge

transfer resistance (Rct) of CoP–Ce2(CO3)2O/NF was substan-
tially lower than that of the other comparison samples, demon-
strating the fastest charge transfer kinetics (Fig. 4d).45

Furthermore, the electrochemical double layer capacitance
(Cdl) was derived from the collected CV curves at different scan
rates (Fig. S11–S13, ESI†), and the electrochemically active
surface area (ECSA) was calculated from the Cdl measurements
to reveal the intrinsic activity of the catalyst.46 CoP–Ce2(CO3)2O/
NF has an immense Cdl value (37.0 mF cm�2), which is more
significant than CoP/NF (10.9 mF cm�2) and Ce2(CO3)2O/NF
(11.3 mF cm�2) in Fig. 4e, implying that the larger ECSA has
more available active sites (Fig. S14, ESI†).44 As depicted in
Fig. 4f, CoP–Ce2(CO3)2O/NF exhibited negligible potential
change at 10 mA cm�2 after 400 h, signifying its robust HER
stability.

The OER catalytic activity of all samples and RuO2/NF was
further investigated. As presented in Fig. 5a, CoP–Ce2(CO3)2O/
NF only requires an overpotential of 205.5 mV at a current
density of 10 mA cm�2, much lower than CoP/NF (251.5 mV)

Fig. 3 High-resolution XPS spectra of (a) Co 2p, (b) Ce 3d, (c) O 1s, and (d) P 2p regions in CoP–Ce2(CO3)2O/NF, CoP/NF, and Ce2(CO3)2O/NF,
respectively.

Fig. 4 HER performance of different catalysts and Pt/C/NF in 1.0 M KOH. (a) LSV polarization curves, (b) comparison with the potentials of recently
reported catalysts for HER activity at 10 mA cm�2, (c) corresponding Tafel slopes, (d) electrochemical impedance spectroscopy (EIS), (e) double layer
capacitance (Cdl), and (f) stability of the CoP–Ce2(CO3)2O/NF catalyst for the HER.
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and Ce2(CO3)2O/NF (227.8 mV), and slightly higher than RuO2/
NF (185.1 mV). The Tafel slope was employed to evaluate the
catalytic reaction kinetics of the OER, where the Tafel slope of
CoP–Ce2(CO3)2O/NF is 75.6 mV dec�1, close to that of commer-
cial RuO2/NF (51.9 mV dec�1), but lower than that of
Ce2(CO3)2O/NF (93.7 mV dec�1) and CoP/NF (92.8 mV dec�1),
demonstrating fast kinetics (Fig. 5b).47 In contrast, the over-
potentials and Tafel slopes of various catalysts at current
densities of 10 and 100 mA cm�2 are summarized in Fig. 5c,
indicating that the OER performance of CoP–Ce2(CO3)2O/NF
exceeds those of single comparison samples. To evaluate the
intrinsic catalytic activity of the catalysts, we utilized the TOF
(turnover frequency) values derived from the ICP results
(Table S1, ESI†).48 We plotted the TOF values of the catalysts
under gradually increasing applied voltages in Fig. S15 (ESI†).
Notably, CoP–Ce2(CO3)2O/NF displayed the highest TOF value,
which is a clear indication of its exceptional intrinsic activity.
As indicated in Fig. 5d and Table S3 (ESI†), the CoP–Ce2(CO3)2O/
NF has advantages over the latest reported OER catalysts. Further-
more, the CoP–Ce2(CO3)2O/NF also has a smaller Rct than other
catalysts, demonstrating the enhanced charge transfer perfor-
mance through the CoP/Ce2(CO3)2O interface (Fig. 5e).47 In addi-
tion, the performance exhibits negligible degradation after
approximately 280 h of continuous operation at 10 mA cm�2

(Fig. 5f), further confirming its high OER stability.
Considering the excellent HER and OER performance of

CoP–Ce2(CO3)2O/NF, a bifunctional electrode device using
CoP–Ce2(CO3)2O/NF as the anode and cathode was constructed
to evaluate the bifunctional catalytic performance in overall
water splitting (Fig. 6a). As seen in Fig. 6b, CoP–Ce2(CO3)2O/
NF(+)||CoP–Ce2(CO3)2O/NF(�) exhibits a cell voltage of 1.82 V at
100 mA cm�2, slightly lower than the commercial RuO2/
NF(+)||Pt/C/NF(�) (1.73 V). It is noteworthy that the situation is
reversed at high current density (4400 mA cm�2), and the

bifunctional CoP–Ce2(CO3)2O/NF(+/�) shows better catalytic
performance. Moreover, the designed bifunctional catalyst
outperformed most previously reported bifunctional catalysts
at 10 mA cm�2 (Fig. 6c and Table S4, ESI†). Furthermore, the
chronopotentiometry curve of CoP–Ce2(CO3)2O/NF(+)||CoP–
Ce2(CO3)2O/NF(�) at 50 mA cm�2 was maintained for 50 h
(Fig. 6d), confirming the high durability for water splitting.

To investigate the composition changes of CoP–Ce2(CO3)2O/
NF after prolonged OER stability testing, we conducted a series
of characterizations. SEM images revealed a slight collapse in the
morphology of the catalyst after OER stability testing, while the
morphology became rough only after the HER (Fig. S15, ESI†).

Fig. 5 OER performance of different catalysts and RuO2/CC in 1.0 M KOH. (a) LSV polarization curves, (b) corresponding Tafel slopes, (c) summary of
overpotentials (at 10 and 200 mA cm�2) and Tafel plots, (d) comparison with the overpotentials of recently reported catalysts for OER activity at 10 mA cm�2, (e)
electrochemical impedance spectroscopy (EIS), and (f) stability of the CoP–Ce2(CO3)2O/NF catalyst for the OER.

Fig. 6 (a) Schematic diagram of the overall water splitting electrolyzer
using CoP–Ce2(CO3)2O/NF as a bifunctional catalyst. (b) Comparison of the
polarization curves of CoP–Ce2(CO3)2O/NF(+)||CoP–Ce2(CO3)2O/NF(�) and
the RuO2/NF(+)||Pt/C/NF(�) at high currents in 1.0 M KOH. (c) Comparing cell
voltages with the recently reported electrolyzers at 10 mA cm�2 in 1.0 M KOH.
(d) Long-term stability test of CoP–Ce2(CO3)2O/NF(+)||CoP–Ce2(CO3)2O/NF(�)

at 50 mA cm�2 in 1.0 M KOH.
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XRD results showed that the substance after OER stability
testing was consistent with Co3O4 (JCPDS: 09-0418) and CeO2

(JCPDS: 01-0800), indicating the formation of the corresponding
oxides on the catalyst’s surface (Fig. S16, ESI†). Furthermore,
XPS analysis demonstrated an increase in the ratio of Co3+ and
M–O after stability testing (Fig. S17, ESI†), implying the presence
of more oxygen-containing species and phosphides on the
catalyst surface.49 Based on our findings, we have determined
that the CoP was indeed oxidized during the OER process.
Therefore, we now believe that the primary benefit of the
phosphatization process is the generation of a distinctive mor-
phology that facilitates better mass transfer. The advantage
cannot be achieved with oxides alone.

3.3. Catalytic mechanism analysis

Based on the above discussion, the augmenting performance
and robust stability of CoP–Ce2(CO3)2O/NF for the HER/OER are
attributed to the heterojunction and the strong synergistic effect at
the interface of CoP and Ce2(CO3)2O. The XPS results confirmed the
electronic interaction between CoP and Ce2(CO3)2O, indicating that
electrons were transferred from Ce2(CO3)2O to CoP species.50

Therefore, the presence of Ce2(CO3)2O makes the Co component
in CoP more positively charged, while P is negatively charged. In
the alkaline medium of the HER, the acidic Co nodes (d+) can much
more easily absorb H2O molecules. An electron is obtained by the
closely neighboring basic P center (d�) as the proton-acceptor
center splits a H2O molecule to form adsorbed H* (M + e� +
H2O - M–H* + OH�).51 Then, the adsorbed H* further combines
with an electron and another H2O molecule, and simultaneously
releases an H2 molecule via the Heyrovsky mechanism (M–H* +
H2O + e� - M + OH� + H2).52 During the OER process, the CoP
surface in the CoP–Ce2(CO3)2O heterostructure is first oxidized into
a thin layer of cobalt oxide or oxyhydroxide.50,52 Due to the lower
work function of Co3O4 (4.5 eV) compared to CeO2 (4.75 eV),
electrons are partially transferred from Co3O4 to CeO2. This results
in the formation of electron-deficient Co oxide and electron-rich
CeO2.53,54 Therefore, the electron-deficient Co site can more
easily adsorb a hydroxyl (OH� + * - OHads + e�), and donates a
proton subsequently (OHads + OH� - Oads + H2O + e�). Then O*
is attacked by another OH� and deprotonated to form *OOH
(OOHads + OH� - O2ads + H2O + e�). Finally, the proton-coupled
electrons transfer and release O2 (O2ads = O2 + *).48 The role of
Ce2(CO3)2O is not negligible, which provides high conductivity and
regulates the binding energy of the intermediates.55 Besides, the
urchin-like morphology facilitates electrolyte transport/gas
diffusion,56 and the CoP/Ce2(CO3)2O heterogeneous interface pro-
vides abundant electrochemically active sites and promotes charge
transfer, thus improving the catalytic performance.57,58

4. Conclusions

In summary, an urchin-like CoP–Ce2(CO3)2O/NF was con-
structed by a facile hydrothermal and selective phosphating
process. Benefiting from the electron transfer effect between
CoP and Ce2(CO3)2O species, as well as the urchin-like structure

supports for more active sites, the electrocatalytic performance
and reaction kinetics of CoP–Ce2(CO3)2O/NF are significantly
improved and show impressive long-term durability. Conse-
quently, the CoP–Ce2(CO3)2O/NF exhibits low potentials of 85.2
and 205.5 mV to deliver 10 mA cm�2 for the HER and OER,
respectively. More remarkably, the CoP–Ce2(CO3)2O/NF(+)||CoP–
Ce2(CO3)2O/NF(�) electrolyzer achieves 100 mA cm�2 at a low cell
voltage of 1.82 V for overall water splitting. This work sheds light
on the implications of the interfacial electron transfer effects and
serves as a strategy for designing highly efficient electrocatalysts
for overall water splitting.
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