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HIGHLIGHTS GRAPHICAL ABSTRACT

¢ Nitrogen-doped carbon wrapped
Fe,03-CNTs composite is synthe-
sized by a facile and controllable
method.

e The NC@Fe,03-CNTs catalyst ex-
hibits high activity, selectivity and
long term stability on ORR for H,0,
generation.

¢ A synergistic effect between the N-
doped carbon and Fe,05 clusters is
proved to dominate the superior
catalytic performance.

¢ A reasonable catalytic mechanism
is proposed based on experimental

results.
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Fe,05 clusters
Nitrogen-doped
Oxygen reduction
Hydrogen peroxide

much higher relative current after continuous operation for 10 h, as compared to com-
mercial Pt/C catalyst. The optimized NC@Fe,05-CNTs shows the superior overall perfor-
mance of H,O, generation as compared to the present catalysts under high pH. The
catalytic mechanism analysis indicates that the nitrogen species, Fe chemical states, ox-

ygen vacancies and CNTs skeleton play important roles in improving the selectivity and
current density of H,O, generation.
© 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Hydrogen peroxide (H,0,) is an eco-friendly oxidant widely
utilized for chemical synthesis and environmental remedia-
tion [1,2]. The remarkable oxidation properties of hydrogen
peroxide allow various oxidizing chemicals, including the
organic pollutants in the water stream. More than 95% of H,0,
is produced through the energy-intensive anthraquinone
oxidation process today [3]. However, the anthraquinone
oxidation process requires an enormous infrastructure, a
large amount of hydrogen, and a high quantity of organic
solvent. Besides, it involves stabilizers for preventing degra-
dation of anthraquinone molecules and H,0,. Moreover, the
unstable nature of H,0, makes long-distance transport very
challenging and limits the accessibility of H,0, in remote rural
areas [4]. Hence, the continuous on-site production of H,0,
using an inexpensive metal catalyst based electrochemical
reduction approach that follows a two-electron pathway is a
promising alternative. However, the two-electron processes
often accompany by a four-electron path that generates H,O
[2]. As aresult, designing an ORR catalyst with high selectivity
towards the two-electron pathway is the critical step on the
way to obtaining a high-performance H,0, catalyst. However,
mostly noble metals based ORR catalysts can meet all those
requirements [5].

Recently, the carbon-based materials have shown prom-
ising performances because of the large surface areas, low
cost, high electrical conductivity, highly tenability, and elec-
trochemical stability [6—8]. Studies demonstrated that the
performance of the carbon material based electrochemical
H,0,, the catalyst, can be optimized by tailoring the electronic
property by changing the catalyst morphology and doping
foreign atoms [8]. The other factor that affects the overall
catalyst performance is the pH of the reaction media. In
general, the natural or basic pH is preferred over the acid pH
due to the acidic corrosion. However, some studies revealed
that H,O, becomes less stable in alkaline conditions, espe-
cially at pH > 9 [9]. The main problems of the conventional
nonprecious metal catalysts [10—12] are that they show high
performance in H,0, production under acidic condition but
favor the four-electron pathway under alkaline condition
[13—15]. Because the transition-metal based active sites prefer
for four-electron reduction in high pH [16—18]. Therefore,
most of the precious metals or heteroatom-doped carbon
materials show either low current density or low selectivity at
high pH.

Herein, we designed a simple method of synthesizing
NC@Fe,05-CNTs composite by in-situ pyrrole polymerization

on the surface of organometallic frameworks (MOF). Electro-
chemical studies revealed that the optimized NC@Fe,03-CNTs
catalyst exhibits excellent catalytic performance for electro-
chemical reduction of O, to H,O, in alkaline media. The
maximum limiting current density and the corresponding
selectivity of H,O, are —5.96 mA cm-2 at 0.2 V and 97.3%,
respectively, which are much higher than those reported in
the literature (Table S2). For example, The H,0, catalyst with
the highest selectivity under alkaline media reported so far is
N-doped C is 93% (Table S2). Although the N-doped C revealed
the same current density as NC@Fe,05-CNTs, the catalyst
loading and overpotential are much higher than those of
NC@Fe,05-CNTs as shown in Table S2. Moreover, the opti-
mized NC@Fe,03-CNTs catalyst shows strong resistance to
catalyst poisoning; therefore, it displays high stability. The
crystal structure, specific surface area, metal oxide content,
nitrogen content, elemental state, and microstructure of the
series of the catalysts were analyzed by XRD, Raman, BET, TG-
DTG, elemental analyzer, XPS, SEM and TEM method. The
oxygen reduction reaction (ORR) of the 2-electron transfer
process described by the Koutecky-Levich (K-L) equation was
also confirmed by the rotating ring-disk electrode (RRDE) test.
Finally, a possible reaction mechanism is proposed.

Experimental section
Synthesis of MIL-101-Fe crystals

The MIL-101-Fe crystals were obtained according to the re-
ported procedure with minor modifications. Initially,
4.0 mmol of FeCl; and 4.0 mmol of H,BDC were ultrasonically
dissolved into 40 mL of N,N-dimethylformamide (DMF) for
5 min. After stirring for another 10 min, the resulted solution
was slowly heated to 100 °C for 12 h in an oil bath, and then
naturally cooled down to room temperature. After centrifu-
gation, abundant ethanol washing and vacuum drying over-
night, an orange powder was obtained. The as-received
powders are nominated as MIL-101-Fe crystals.

Synthesis of NC@Fe,03-CNTs composite

The series of N-doped carbon coated Fe,03-CNTs (NC@Fe,0s3-
CNTs) were prepared as below. Firstly, 0.3 g of MIL-101-Fe
crystals and 0.060 g of carbon nanotubes (CNTs) were
dispersed in 50 mL of deionized (DI) water under vigorously
stirring. Ten minutes later, 2 mL of pyrrole was pipetted into
the above solution and the resulted mixture was continuously
stirring for 30 min. Subsequently, 50 mL of 11.6 mM
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ammonium persulfate (APS) solution was slowly added
dropwise into the above mixtures under continuous stirring at
room temperature. After uninterruptedly stirring for another
12 h, the product of polypyrrole@MIL-101-Fe-CNTs was sepa-
rated by filtration coped with abundant H,O and ethanol
washing. After being freeze-dried, the resulted powder was
placed in a tube furnace, slowly raised to different tempera-
tures (700, 800, and 900 °C) with a heating rate of 5 °C min~in
an Ar atmosphere, and maintained at the same temperature
for 3 h. Note: Unless otherwise specified, NC@Fe,05-CNTs re-
fers to an 800 °C calcined product in this work.

As for comparison, the NC@Fe,03;, NC@CNTs and Fe,03-
CNTs were also prepared by carbonizing the precursors of
Ppy@MIL-101-Fe, Ppy@CNTs, and MIL-101-Fe-CNTs at 800 °C
in Ar atmosphere, respectively.

Electrochemical measurements

The ORR activities of the as-prepared catalysts were studied
by an electrochemical workstation of Biologic VMP3 with a
typical three-electrode system in N,- or O,-saturated 0.1 M
KOH electrolyte. A rotating disk (glassy carbon, GC) electrode
with a diameter of 4 mm, graphite plate and Ag/AgCl electrode
were used as working, counter, and reference electrodes,
respectively. The GC electrodes were polished with aluminum
powder, and then cleaned in sulfuric acid, ethanol, and water
subsequently for three times before use. The working elec-
trode was prepared as follows: 2 mg of the as-synthesized
catalyst powder was ultrasonically dispersed into 400 upL
(Vwater:Va-propanol:VNafion = 4:1:0.025) aqueous solution. Thirty
minutes later, 10 pL of the catalyst inks were pipetted onto
several GC electrodes and dried at room temperature. The
loading of the catalyst on GC electrode is ca. 0.4 mg cm™2. It
should be noted that commercial Pt/C (20 wt%) modified GC
electrodes adopt a similar method as above, in which 5 pL of
Pt/C inks is pipetted onto GC surface with a loading of
0.2 mg cm™2,

The cyclic voltammograms (CV) measurements were
recorded in N,- or O,-saturated 0.1 M KOH electrolyte with a
scan rate of 50 mV s~*. The linear sweep voltammetry (LSV)
curves were conducted at a scan rate of 10 mV s! with a
rotating speed from 400 to 2500 rpm in O,-saturated 0.1 M
KOH. The chronoamperometric curves were operated at a
constant potential of 0.56 V (vs. RHE) in O,-saturated 0.1 M
KOH. All potentials (vs. Ag/AgCl) in this work were calibrated
to the RHE by the average CV curves of the two potentials at
which the current crossed zero (0.960 V) was taken to be the
thermodynamic potential in H,-saturated 0.1 M KOH (Fig. S1).
All curves were reported here without iR compensation, and
all the electrochemical tests were performed at room tem-
perature (25 + 1 °C).

Results and discussion
Synthetic strategy analysis
The synthesis of NC@Fe,03;-CNTs is shown in Scheme 1,

where the CNTs, MIL-101-Fe, and pyrrole monomer are
initially well-mixed by vigorously stirring in aqueous solution.

As the strong oxidizing agent of APS is slowly added, the
uniformly dispersed pyrrole monomer slowly polymerizes on
the surface of MIL-101-Fe-CNTs to form Ppy@MIL-101-Fe-
CNTs composite. After carbonization at 800 °C in the Ar at-
mosphere, the Ppy was converted into a uniformly coated
protection layer on the surface of the MIL-101-Fe, which was
turned into a three-dimensional skeleton that comprised of
Fe,O3 nanoclusters. A good ORR performance is expected
through their synergistic effect. It is worth mentioning that
introducing CNTs can increase the electrical conductivity of
the composite materials substantially. Besides, a series of
control materials were prepared (NC@Fe,0;, NC@CNTs, and
Fe,03-CNTs), in order to further investigate the effect of each
component on catalytic performance.

Crystal structures, compositions and thermal studies

The crystal structures of the synthesized NC@Fe,03-CNTs
together with Fe,05-CNTs were characterized by XRD (Fig. 1a).
The NC@Fe,05-CNTs exhibits the typical diffraction peaks of
v-Fe,05 (JCPDS: 39—-1346), as well as a sharp peak at ca. 25.8°
representing (002) plane of graphitic carbon [19,20]. The
similar diffraction peaks were simultaneously observed on
the calcined materials at 700 and 900 °C (Fig. S2a). It was worth
noting that the Fe,05-CNTs (Fig. S2b) not only shows the Fe,03
diffraction peaks but also reveals two distinctive diffraction
peaks at 47.6° and 51.9° representing the (600) and (402) planes
of FesC, (JCPDS: 20—0508) respectively. The FesC, species in
Fe,05-CNTs could be caused by carbon doping at high tem-
perature, indicating the demolition of the NC-protective layers
[21]. The degree of graphitization of the composites is calcu-
lated by Raman using the intensity ratio (Ip/Ig) of the disorder-
induced D-band (sp? carbon) and graphitic G-band (sp? carbon)
[22]. Fig. 1b showed that the intensity ratio of NC@Fe,05-CNTs
was 0.88, slightly lower than that of NC@Fe,05-CNTs obtained
at 700 °C (0.90) and 900 °C (1.11) as well as some other control
samples (Fig. S3), indicating a higher degree of graphitization
after calcined at 800 °C. The higher graphitization property
means higher conductivity and corrosion resistance in the
electrocatalytic process [23]. In this regard, the 800 °C is found
to be the optimal annealing temperature.

The specific surface area and the porosity of NC@Fe,05-
CNTs are also investigated by Brunauer-Emmett-Teller (BET)
gas-sorption measurements (Fig. 1c). The N, adsorption-
desorption isotherms at 77 K shows a type IV isotherm with
a distinct hysteresis loop at relative pressures (P/P,) of ca. 0.3
to 1.0. The BET, specific surface area of NC@Fe,05-CNTs, is ca.
224.0m? g ! (Fig. 1c), and the pore size distribution, calculated
by the Barrett-Joyner-Halenda (BJH) method, are mainly
centered at ca. 13.8 and 23.8 nm (inset of Fig. 1c). The unique
hierarchical mesoporous material not only facilitates elec-
trolyte transportation and O, diffusion but also exposes more
active sites to improve ORR kinetics [24—26].

The mass content of Fe,O3; nanoclusters in NC@Fe,05-
CNTs is evaluated by TG and DTG curves (Fig. 1d). A slight
decrease below 125 °C is due to the evaporation of moisture.
The two distinct exothermic peaks at 432 and 534 °C in the
range of 36—800 °C associated with the combustion of amor-
phous carbon and crystalline carbon, respectively [27,28]. The
total weightloss of ca. 87.4 wt % indicating the mass content of
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Scheme 1 — Schematic illustration of the reaction process for synthesizing NC@Fe,03-CNTs.

Fe,03 species in the hybrid catalyst, is ca. 12.6 wt %. Moreover,
the N content in the carbonized samples at different tem-
peratures was analyzed by an elemental analyzer. As ex-
pected, the total N content progressively decreases with the
increase of the carbonization temperatures, as reported in the
literature (Table S1) [13,29].

Microstructures analysis

The morphologies and microstructures of the MIL-101-Fe,
Ppy@MIL-101-Fe-CNTs, and NC@Fe,03-CNTs are character-
ized by scanning electron microscopy (SEM) and transmission
electron microscopy (TEM). The MIL-101-Fe crystals present
well-defined dodecahedron metal-organic-frameworks (MOF)
with a smooth surface and a uniform particle size of ca. 1.0 um
(Fig. 2a). After the polymerization of the pyrrole monomer, the
resulted Ppy@MIL-101-Fe-CNTs exhibits three-dimensional
sheet-like assembled structures (Fig. 2b), which are formed
by the dissolution-reassembly process of MOF in aqueous
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solution [30]. After calcination at 800 °C in Ar atmosphere, the
morphology of NC@Fe,03;-CNTs was basically unchanged
(Fig. 2c). The TEM images are further used to study the change
migration in microstructures. It was observed that the MIL-
101-Fe shows solidly rhombic structure (Fig. 2d), and the
Ppy@MIL-101-Fe-CNTs appears to be a porous lamellar struc-
ture in the selected domain (Fig. 2e). After calcination, the
microstructure of NC@Fe,05-CNTs changes very little (Fig. 2f)
as compared to that of the control samples (Ppy@MIL-101-Fe
and Ppy@CNTs) (Fig. S4). A similar structural reorganization
is observed in the Ppy@MIL-101-Fe composite. Additionally,
the high-resolution TEM image (Fig. 2g) of NC@Fe,03-CNTs
confirms the cubic phase of Fe,03 clusters with the distinctly
periodic lattice fringes, which is the single crystal of y-Fe,0s.
The d-spacing of 0.48 nm can be indexed to (111) planes.
Moreover, a thin layer of N-doped carbon (2.92 nm) covers the
surface of Fe,05 crystals. The N-doped carbon layer not only
inhibits the agglomeration of Fe,05 clusters but also gener-
ating Fe-N; active sites at the interface. These are the
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Fig. 1 — (a) X-ray diffraction (XRD) patterns, (b) Raman spectrum, (c) Nitrogen adsorption—desorption isotherms with the pore
size distribution curves by the BJH method (inset), and (d) Thermal gravimetric (TG) analysis and derivative thermal

gravimetric (DTG) curves of NC@Fe,05-CNTs in O, atmosphere with a rising temperature rate of 2.5 °C min~

1
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Fig. 2 — SEM images of (a) MIL-101-Fe crystals, (b) Ppy@MIL-101-Fe-CNTs and (c) NC@Fe,03-CNTs. TEM images of (d) MIL-
101-Fe crystals, (€) Ppy@MIL-101-Fe-CNTs and (f) NC@Fe,03-CNTs. (g) High-resolution TEM image, (h) SAED pattern and (i)
HAADF-STEM image and its corresponding elemental mappings of NC@Fe,03-CNTs.

distinctive futures of efficient catalysts [31]. The electron
diffraction (SAED) of the selected-area (Fig. 2h) confirms the
phase of y-Fe,O3 with a [110] zone axis. Element mapping
demonstrates that the elements of C, O, N, and Fe are uni-
formly dispersed throughout the entire architectures of the
NC@Fe,05-CNTs (Fig. 2i).

Electrochemical analysis

Cyclic voltammetry measurements first evaluated the elec-
trocatalytic activities of NC@Fe,05-CNTs toward the ORR. The
experiment was performed in both N,- and O,-saturated 0.1 M
KOH solution at a scan rate of 50 mV s*. There is no
distinctive redox peak in the Nj-saturated solution, whereas
there is a well-defined cathodic peak at 0.83 V in O,-saturated
electrolytes (Fig. 3a), indicating a good ORR catalytic activity of
the NC@Fe,03-CNTs [32]. The LSV curves of temperature effect
on NC@Fe,03-CNTs catalysts are further explored in Fig. 3b.
The onset potentials of series NC@Fe,05-CNTs catalysts
display a gradual negative shift with increasing calcination
temperatures, whereas the synthesized NC@Fe,05-CNTs at
800 °C shows the maximum limiting current density. As
shown in Figs. S5—S7, the LSV polarization curves show that
the current densities increase with increasing rotation speeds
due to the thin diffusion layer at a high rotation speed, which
subsequently results in better O, permeability. The corre-
sponding Koutecky-Levich (K-L) plots demonstrate signifi-
cantly different electron transfer numbers ranging from 2.0 to
3.2 because of the high limiting current density and high
faradaic efficiency. Accordingly, the NC@Fe,03-CNTs catalyst

calcined at 800 °C is selected for further study. As shown in
Fig. 3c, LSV measurements investigated the ORR catalytic ac-
tivities of the catalysts calcined at 800 °C with a scan rate of
5 mV s~*. The NC@Fe,05-CNTs catalyst exhibits the highest
ORR activity with a positive onset potential (Eonset) of 0.96 V
and the half-wave potential (E1/,) of 0.84 V in 0.1 M KOH. The
NC@Fe,05-CNTs shows the maximum limiting current den-
sity (5.96 mA cm™?) at 0.2 V, which is ca. 1.25—, 1.76—, 1.12—
and 1.17—fold higher than that of NC@CNTs, Fe,05;-CNTs,
NC@CNTs, and commercial Pt/C respectively. The excellent
catalytic activity of the NC@Fe,05-CNTs is due to the synergic
effect between N-doped carbon, Fe,05 species, and CNTs. The
corresponding electron transfer numbers of different cata-
lysts are summarized in Fig. 3d obtained from the rotation
speeds dependent LSV curves (Fig. S8). All the curves are fitted
linearly by K-L plots representing the first-order reaction ki-
netics [33]. We can find that the electron transfer numbers of
NC@Fe,05-CNTs, NC@Fe,05; and NC@CNTs are similar (close
to 2.0). However, the electron transfer number of Fe,03-CNTs
is ca. 3.5, and commercial Pt/C is ca. 4.0, respectively, indi-
cating the importance of the N-doped carbon encapsulation in
the 2e™ transfer process. The 2e” transfer process is demon-
strated by RRDE measurements (Fig. S9). As the current den-
sity of the NC@Fe,03-CNTs catalyst increases, the oxidation
current of the ring electrode also increases synchronously,
while the ring current of the Fe,03-CNTs catalyst does not
change much (Fig. 3e). The selectivity of H,O, on NC@Fe,03-
CNTs catalyst is calculated, and the results are ranging from
93.7% to 97.3% which are significantly higher than that of
Fe,03-CNTs (25.4%—36.1%) in the potential range of 0.2—0.6 V
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Fig. 3 — (a) GV curves of NC@Fe,03-CNTs catalyst in 0.1 M KOH solution saturated by N, or O,. (b) LSV curves of NC@Fe,05-
CNTs catalysts calcined at different temperatures at 1600 rpm in O,-saturated 0.1 M KOH solution. (c) LSV curves and (d)
corresponding summarized electron transfer numbers of different catalysts (800 °C calcination) at 1600 rpm in O,-saturated
0.1 M KOH solution. (e) RRDE voltammograms with the ring current corresponding to H,0, oxidation obtained from the disc
current and (f) corresponding H,0, selectivity as a function of applied potentials of NC@Fe,03-CNTs and Fe,03-CNTs

catalysts at 1600 rpm in O,-saturated 0.1 M KOH electrolyte.

(Fig. 3f). Thatis consistent with the results from K—L plots. The
ultra-high current density and H,0, selectivity are far better
than those of previously reported materials (Table S2),
demonstrating a great industrial application prospect.

The number of active sites is usually proportional to the
electrochemical double-layer capacitances (Cq) [34]. The Cq of
all catalysts is measured by scan-rate dependent CV mea-
surement within a non-Faradaic region in 0.1 M KOH (Fig. 4a
and Fig. S10). As shown in Fig. 4b, the calculated Cq; values of
NC@Fe,05-CNTs is determined to be 2.59 mF cm?, much
higher than those of NC@Fe,0; (1.52 mF cm %), NC@CNTs
(0.43 mF cm~?) and Fe,05-CNTs (1.45 mF cm?). The high Cgq
value of NC@Fe,03-CNTs is related to its three-dimensional
sheet-like assembly structures with the high specific surface
area that exposing more active sites and thus improve ORR
activity [35].

In addition to the high activity, the long-term stability of
ORR s also an important metric for the catalytic application.

Therefore, the ORR durability of both NC@Fe,03-CNTs and
20 wt % Pt/C catalyst are investigated by chro-
noamperometry test at 0.6 V in O,-saturated 0.1 M KOH
solution with a rotation rate of 1600 rpm for 10 h. As shown
in Fig. 4c, the NC@Fe,03-CNTs catalyst maintained a higher
and stable initial and final relative current than those of
commercial Pt/C (20 wt %). Notably, the NC@Fe,03-CNTs
catalyst keeps ca. 82.9% of initial activity, which is signifi-
cantly higher than that of the commercial Pt/C (20 wt %,
retention ca. 65.9%) after 10 h. These results indicate that
the NC@Fe,03-CNTs catalyst has a better stability than
commercial Pt/C, which could be ascribed to the unique
core-shell structure along with a thick layer of N-doped
carbon enveloped Fe,;0;-CNTs composite. In contrast, Pt
nanoparticles in commercial Pt/C is mainly loaded on the
conductive carbon black surface, and they are easily exfo-
liated, aggregated, or poisoned during long-term stability
test.
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Catalytic mechanism analysis

To further investigate the effects of elemental composition
and chemical states of each element on catalytic activity, X-
ray photoelectron spectroscopy (XPS) studies are performed.
As expected, the NC@Fe,03-CNTs exhibits a series of charac-
teristic peaks in the survey spectrum, including C, N, O, and Fe
elements, in which the high-resolution C 1s core level is
deconvoluted into C=C (284.0 eV), C—C (284.8 eV), and C—O
(286.0 eV) (Fig. S11) [36]. As shown in Fig. 5a, the N 1s core
levels of all samples can be deconvoluted into four peaks
corresponding to pyridinic-N (398.2 eV), pyrrolic-N (399.9 eV),
graphitic-N (401.0 eV), and oxidized-N (403.7 eV), respectively
(Fig. 5a) [37,38]. Previous studies have indicated that both
pyridinic N, and graphitic N have direct contribution to ORR
activity [39]. The XPS results show that the pyridinic N, pyr-
rolic N, and graphitic N are the main components in
NC@Fe,03-CNTs, NC@CNTs, and NC@Fe,0;. However, the
graphitic N content is low in NC@CNTs, signifying the Fe,03
contribution towards the formation of graphitic N. Therefore
we concluded that the highest catalytic activity of NC@Fe,05-
CNTs among the other catalysts could be related to the high
content of graphitic N. Moreover, one should note that the
composition of N from the calcined product of polypyrrole is
quite different from the structure of pure Fe—N, in iron
porphyrin (Fig. S12).

The Fe 2p core levels of different catalysts are investigated,
and each Fe 2p is split into two pairs of doublet and two sat-
ellite peaks (Fig. 5b). The binding energies at 710.6 and 723.8 eV
are ascribed to Fe?* species, the peaks at 713.6, and 726.8 eV

are originated from Fe>" species, and the rest of two peaks at
717.2 and 732.8 eV belong to satellite. Interestingly, the con-
tents of Fe*" in NC@Fe,03-CNTs (49.4%) and NC@Fe,05 (38.2%)
are noticeably higher than that of Fe,03-CNTs (24.1%), which
indicates that the encapsulation of N-doped carbon protects
the Fe*' in a certain degree. Therefore, one can conclude that
the Fe*" may relate to the active site. In addition, the high-
resolution O 1s core levels of all catalysts are deconvoluted
into four peaks at binding energies of 530.1, 531.3, 532.2, and
533.3 eV, respectively. They are corresponding to the Fe—O,
vacancies, C—0, and adsorbed H,0/C=O0 (Fig. S13) [40]. High
contents of oxygen vacancy are observed on both NC@Fe,05-
CNTs (29.5%) and NC@Fe,05 (35.7%) due to the Fe,05. The high
content of oxygen vacancy promotes the H,O molecule
adsorption on Fe,Os; surface, which helps the Step III in
Scheme 2. It should be noted that the microstructure of
NC@Fe,05-CNTs catalyst changed little after stability test
(Fig. S14a), while the crystallinity of Fe,05 in the catalyst was
almost undetectable (Fig. S14b). In addition, one can find that
the Fe 2p and N 1s XPS spectra of the catalyst also become very
weak after stability test (Fig. S15). These results may be caused
by a combination of catalyst exfoliation and electrolyte
erosion over long time.

We proposed schematics of the possible catalytic mecha-
nism according to the literature report and our experimental
results. We concluded that the Fe—Nj, active site is crucial to
the catalytic performance, while the Fe,O; can enhance the
adsorption of water molecules on the surface due to the high
level of oxygen vacancy (Scheme 2). Step I: the dissolved O,
molecule is adsorbed on the Fe—N, active site to form O,*
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Scheme 2 — The proposed catalytic mechanism of NC@Fe,0; catalyst for electrochemical O, reduction to H,0, in alkaline

medium.

(02 + * — 0Oy") [41]. Step II: an intermediate state is formed
between O," and adsorbed water on Fe,O3; by accepting one
electron from the bulk (O,* + H,O + e~ — OOH* + OH") [42].
Step III: H* moves to O,* and OH ™ leaves from the surface. Step
IV: a similar process as Step II happens and forms OOH* and
H,0 intermediate (OOH* + H,0 +e~ — H,O, + OH™ + ). Step V:
H' moves to O,* and OH™ leaves from the surface along with
H,0,, and closes the catalytic cycle.

Conclusions

In summary, we developed a novel method of preparing
polypyrrole-coated MIL-101-Fe-CNTs nanocomposite which
was subsequently calcined at 800 °C in Ar to obtain three-
dimensional NC@Fe,03-CNTs. High-resolution TEM indicates
that Fe,O; in NC@Fe,05-CNTs is a single crystal, which is
different from literature reports on Fe-based ORR catalysts.
Electrochemical studies revealed that the optimized
NC@Fe,03-CNTs exhibits a high ORR current density and a high
selectivity towards H,0, over a wide range of potential window
as compared to those of controls. The K-L equation was used to

evaluate the two-electron transfer feature, and the results are
further confirmed by the RRDE. The XPS test also indicates that
the pyridinic N, pyrrolic N, and Fe(IIl) species content alters the
H,0, selectivity. Furthermore, the graphitic N, oxygen va-
cancies and CNTs may promote the high current density.
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